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Glycosylation is a common post-translational modification of
proteins in eukaryotes.1 The oligosaccharide components of gly-
coproteins affect a wide range of protein functions and are involved
in many important cellular recognition processes.2 However, natural
glycoproteins typically exist as a mixture of glycoforms differing
in oligosaccharide structures, and pure individual glycoforms are
difficult to isolate for detailed structural and functional studies.3

Thus, a variety of synthetic methods have been explored to generate
homogeneous glycopeptides and glycoproteins.4 Among others, the
chemoenzymatic approach using the endo-â-N-acetylglucosamini-
dase (ENGase)-catalyzed transglycosylation seems particularly
promising.5 ENGases are a class of endoglycosidases that hydrolyze
theâ-1,4-glycosidic bond in the coreN,N′-diacetylchitobiose moiety
of N-glycoproteins to release theN-glycans. However, some
ENGases, such as Endo-A fromArthrobacter protophormiae6 and
Endo-M fromMucor hiemalis,7 possess transglycosylation activity
and are able to transfer the releasingN-glycan to a GlcNAc-peptide
acceptor to form a new glycopeptide.5 In contrast to common
glycosyltransferases and exoglycosidases that transfer only monosac-
charides, Endo-A and Endo-M can transfer a large intact oligosac-
charide to a GlcNAc-peptide acceptor in a single step to form a
new glycopeptide, thus allowing a highly convergent glycopeptide
synthesis without the need of protecting groups. A number of large
N-glycopeptides were synthesized by the chemoenzymatic method
for structural and functional studies.8-11 Nevertheless, the chemoen-
zymatic method suffers with a low transglycosylation yield (gener-
ally 5-20%), the product hydrolysis, and the limitations of using
only naturalN-glycans as the donor substrates. To solve these
problems, we report in this paper the use of synthetic oligosaccha-
ride oxazolines, the mimics of the presumed oxazolinium ion
intermediate formed in a retaining mechanism, as donor substrates
for glycopeptide synthesis, which not only broadened the substrate
availability but also led to a high-yield synthesis of largeN-
glycopeptides.

The method was based on the assumption that the ENGase-
catalyzed reaction proceeds via a mechanism of the substrate-
assisted catalysis involving an oxazolinium ion intermediate, as
demonstrated for some chitinases12 and N-acetyl-â-hexosamini-
dases.13 Although a detailed mechanism of ENGase-catalyzed
transglycosylation is yet to be characterized, Fujita and co-workers
recently reported that a disaccharide oxazoline of Manâ1,4GlcNAc
could serve as a substrate for ENGase-catalyzed transglycosyla-
tion.14 This observation suggested that the Endo-A- and Endo-M-
catalyzed transglycosylation might indeed proceed via an oxazo-
linium ion intermediate. To test whether oligosaccharide oxazolines
would be kinetically more favorable substrates for an efficient
N-glycopeptide synthesis than naturalN-glycans, we synthesized
the di- and tetrasaccharide oxazolines corresponding to the core of
N-glycans (Scheme 1). The synthesis of the Manâ1,4GlcN disac-
charide core was achieved through stereocontrolledâ-glycosylation

of intermediates1 and 2, followed by selective inversion of the
Glc C-2 configuration to give4. Compound4 was changed to6
via protecting group manipulations and was glycosidated with the
mannosyl imidate to give the tetrasaccharide7, which was then
converted to the fully acetylated derivative8. Finally, treatment of
8 with TMS-Br/BF3 Et2O for oxazoline formation,15 followed by
de-O-acetylation gave the desired tetrasaccharide oxazoline9. The
disaccharide oxazoline11 was synthesized from4 by similar
protecting group manipulations and oxazoline formation (Scheme
1).

To examine the synthetic oligosaccharide oxazolines as donor
substrates for constructingN-glycopeptides, we synthesized two
typical GlcNAc-peptides, a GlcNAc-heptapeptide12 derived from
HIV-1 gp120 and a 34-mer peptide GlcNAc-C34 derived from
HIV-1 gp41 to serve as the glycosyl acceptors.9,11 It was found
that the Endo-A-catalyzed reaction between the oxazoline11 and
the GlcNAc-heptapeptide12 (3:1) in phosphate buffer (pH 6.5)
proceeded smoothly to form the glycopeptide13, which was isolated
in 82% yield (Scheme 2). Endo-M was also effective in catalyzing
the reaction to give the glycopeptide13 in 78% yield. The newly
formed glycosidic bond was unambiguously determined to be the
expected GlcNAcâ1,4GlcNAc-Asn linkage by detailed NMR
(TOCSY and NOESY) analysis of13 (see Supporting Information).
A doublet atδ 4.65 with a large coupling constant (J ) 8.5 Hz)
for H-1′ indicated aâ-glycosidic bond, and an apparent NOE
correlation between H-1′ and the H-4 of the Asn-linked GlcNAc
indicated that the newly formed glycosidic linkage was aâ-1,4-
type. The results confirm that the ENGase-catalyzed transglyco-
sylation using oligosaccharide oxazoline as the donor substrate
proceeds in both a stereo- and regiospecific manner to afford the
desired glycopeptide, as previously observed when naturalN-
glycans were used as the donor substrates.9-11,16

Scheme 1. Chemical Synthesis of the Di- and Tetrasaccharide
Oxazolines
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We next tested the Endo-A-catalyzed transglycosylation of the
di- and tetrasaccharide oxazolines with the large acceptor, GlcNAc-
C34.11 It was found that the oligosaccharides could also be
effectively transferred to the large GlcNAc-C34 by Endo-A to form
the glycopeptides14 (73%) and15 (75%), respectively (Scheme
3). The glycopeptides were again characterized by ESI-MS and
NMR analysis. Further structural characterization of glycopeptide
15 was performed by Pronase digestion that yielded a single Asn-
linked oligosaccharide, which was identical to the authentic Asn-
linked core pentasaccharide Man3GlcNAc2Asn by 1H NMR, ESI-
MS, and Dionex HPAEC analysis. It was also observed that while
the Manâ1,4GlcNAc-oxazoline and Man3GlcNAc-oxazoline acted
as an efficient substrate for transglycosylation, the resulting
glycopeptide ManGlcNAc2-C34 (14) was resistant to Endo-A
hydrolysis, and the glycopeptide Man3GlcNAc2-C34 (15) was
hydrolyzed only slowly by Endo-A (data not shown). This suggests
that the oligosaccharide oxazolines are much more active substrates
than the ground stateN-glycopeptides, thus being kinetically
favorable for product accumulation.

In conclusion, a highly efficient chemoenzymatic synthesis of
N-glycopeptides was achieved. The use of synthetic oligosaccharide
oxazolines as the donor substrates for the ENGase-catalyzed
transglycosylation not only expanded the substrate availability but
also resulted a substantial enhancement of the synthetic efficiency,
allowing a high-yield synthesis of largeN-glycopeptides. When
combined with the novel in vivo suppressor tRNA technology that

enables efficient overproduction of the acceptor GlcNAc-protein
in E. coli,17 the high-yield transglycosylation may be also very
useful for total glycoprotein synthesis and remodeling.
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Scheme 2. ENGase-Catalyzed Synthesis of a HIV-1 gp120
Fragment Carrying the Core Trisaccharide

Scheme 3. ENGase-Catalyzed Synthesis of HIV-1 gp41
Fragments Carrying the Core Tri- and Pentasaccharides
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